Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present high-resolution Keck Cosmic Web Imager and MUSE integral field unit spectroscopy of VV 114, a local IR-luminous merger undergoing a vigorous starburst and showing evidence of galactic-scale feedback. The high-resolution data allow for spectral deblending of the optical emission lines and reveal a broad emission line component (σbroad ∼ 100–300 km s−1) with line ratios and kinematics consistent with a mixture of ionization by stars and radiative shocks. The shock fraction (percentage of ionization due to shocks) in the high-velocity gas is anticorrelated with the projected surface number density of resolved star clusters, and we find that the radial density profiles around clusters are fit well by models of adiabatically expanding cluster winds driven by massive stellar winds and supernovae (SNe). The total kinetic power estimated from the cluster wind models matches the wind + SN mechanical energy deposition rate estimated from the soft-band X-ray luminosity, indicating that at least 70% of the shock luminosity in the galaxy is driven by the star clusters. Hubble Space Telescope narrowband near-IR imaging reveals embedded shocks in the dust-buried IR nucleus of VV 114E. Most of the shocked gas is blueshifted with respect to the quiescent medium, and there is a close spatial correspondence between the shock map and the Chandra soft-band X-ray image, implying the presence of a galactic superwind. The energy budget of the superwind is in close agreement with the total kinetic power of the cluster winds, confirming the superwind is driven by the starburst.more » « lessFree, publicly-accessible full text available July 28, 2026
-
Abstract We present wide-field, high resolution maps of the color excess for 14 globular clusters toward the Southern Galactic bulge. The maps were derived using Gaia EDR3 astrometry and stellar photometry from the Blanco DECam Bulge Survey, which is a deep, wide-field ugriz Y photometric survey of the southern Galactic bulge. Comparisons with WISE 12 μ m images of thermal continuum emission demonstrate that the maps presented here trace interstellar extinction by dust down to 5″ scales. We use the reddening-corrected photometry of proper motion-selected cluster stars to build color–magnitude diagrams for the target globular clusters, which show residual broadening in excess of that expected from the photometric errors alone. This residual broadening is likely to be driven by star-to-star elemental abundance variations.more » « less
-
Abstract We present photometric evidence for multiple stellar populations (MPs) in 14 globular clusters (GCs) toward the southern Galactic bulge. The photometric data come as part of the Blanco DECam Bulge Survey, which is a deep, wide-field near-UV-near-IR ( ugriz Y) survey of the southern Galactic bulge. Here, we present the first systematic study of bulge GC multiple populations with deep photometry including the u band, which is a crucial indicator of the abundance of CNO-bearing molecules in stellar atmospheres. We identify cluster members using Gaia EDR3 proper motion measurements, and then isolate red giant branch stars using r versus u − r color–magnitude diagrams. We find evidence suggesting all 14 clusters host at least two populations, and NGC 6441, NGC 6626, and NGC 6656 appear to have at least three populations. Many of these clusters are not part of the Hubble Space Telescope (HST) surveys nor do they have comprehensive spectroscopic analyses so we are presenting the first evidence of MPs in several clusters. Not only do we find a strong anticorrelation between the fraction of first-generation stars and cluster absolute V magnitude, but the correlation coefficient and cluster-to-cluster scatter are similar to the results obtained from HST. Our ground-based data extend to much larger radial distances than similar HST observations, enabling a reliable estimate of the global fraction of first-generation stars in each cluster. This study demonstrates that ground-based u -band photometry as provided by DECam will prove powerful in the study of multiple populations in resolved GCs.more » « less
-
Abstract We present James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) integral field spectroscopy of the nearby luminous infrared galaxy NGC 7469. We take advantage of the high spatial/spectral resolution and wavelength coverage of JWST/NIRSpec to study the 3.3μm neutral polycyclic aromatic hydrocarbon (PAH) grain emission on ∼200 pc scales. A clear change in the average grain properties between the star-forming ring and the central AGN is found. Regions in the vicinity of the AGN, with [Neiii]/[Neii] > 0.25, tend to have larger grain sizes and lower aliphatic-to-aromatic (3.4/3.3) ratios, indicating that smaller grains are preferentially removed by photodestruction in the vicinity of the AGN. PAH emission at the nucleus is weak and shows a low 11.3/3.3 PAH ratio. We find an overall suppression of the total PAH emission relative to the ionized gas in the central 1 kpc region of the AGN in NGC 7469 compared to what has been observed with Spitzer on 3 kpc scales. However, the fractional 3.3μm–to–total PAH power is enhanced in the starburst ring, possibly due to a variety of physical effects on subkiloparsec scales, including recurrent fluorescence of small grains or multiple photon absorption by large grains. Finally, the IFU data show that while the 3.3μm PAH-derived star formation rate (SFR) in the ring is 27% higher than that inferred from the [Neii] and [Neiii] emission lines, the integrated SFR derived from the 3.3μm feature would be underestimated by a factor of 2 due to the deficit of PAHs around the AGN, as might occur if a composite system like NGC 7469 were to be observed at high redshift.more » « less
An official website of the United States government
